Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

Forum » Probleme propuse » clasa a 6 a ...de belea
[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
petrebatranetu
Grup: moderator
Mesaje: 3142
27 May 2011, 09:44

[Trimite mesaj privat]

clasa a 6 a ...de belea    [Editează]  [Citează] 

In
.Aflati masura unghiului dintre inaltimea si mediana duse din varful
.


---
Doamne ajuta...
Petre
enescu
Grup: moderator
Mesaje: 3399
19 May 2011, 20:30

[Trimite mesaj privat]


Indica?ie:


Uploaded with ImageShack.us

minimarinica
Grup: moderator
Mesaje: 1533
19 May 2011, 21:48

[Trimite mesaj privat]


si inca una:



Uploaded with ImageShack.us

D este simetricul lui C fata de D1
F este simetricul lui D fata de AB
G simetricul lui A fata de BC


---
C.Telteu
TAMREF
Grup: membru
Mesaje: 1083
26 May 2011, 07:35

[Trimite mesaj privat]


[Citat]
In
.Aflati masura unghiului dintre inaltimea si mediana duse din varful
.

Unghiul dintre inaltime si mediana este de
.

petrebatranetu
Grup: moderator
Mesaje: 3142
26 May 2011, 17:31

[Trimite mesaj privat]


asa-i! si ce-i mai frumos e ca solutia mea e diferita de cele prezentate!


---
Doamne ajuta...
Petre
gauss
Grup: Administrator
Mesaje: 6909
26 May 2011, 18:40

[Trimite mesaj privat]


Sa consideram o problema invecinata intre timp...

Fie (P) poligonul regulat cu 24 de laturi si cu varfurile P0, P1, ... P23 in ordine ciclica (- poligon inscris in cercul unitate din planul complex).

Notam C = P0 si B = P12, ca sa ne putem orienta cu un diametru "orizontal".

Sa se arate ca dreptele / corzile determinate de perechile
(P0, P8)
(P12,P2)
si
(P3,P15) (diametru)
sunt concurente intr-un punct A.



---
df (gauss)
gauss
Grup: Administrator
Mesaje: 6909
26 May 2011, 20:09

[Trimite mesaj privat]


O solutie prozaica de a IX-a reuseste sa omoare complet imaginatia si necesitatea de constructii sintetice, ea trebuie ca este foarte utila pentru probele de la o olimpiada sau alta (desfasurate rau contra timp). Nu sunt mandru de ea, dar colectam aici solutii...

Notam cu x unghiul dintre AB si mediana AM, M pe BC.
Vom scrie curand o ecuatie (nealgebrica) pentru x.
Dupa o rescalare a triunghiului ABC, putem presupune ca are laturile

AB = sin 30° si
BC = sin 135° .

Unghiul dintre AB si BC este de 15°.
Din motive geometrice, exista un unic unghi x ca cel cautat, aflat intre 0° si 90°-15°. El satisface

Solutia x=30° se verifica imediat,
.

Vorbind riguros...

(Nota: Noua ne trebuia de fapt "implicatia inversa"... Argumentarea trebuie dirijata incat argumentele sa vina in ordinea buna. Rectificarea celor scrise, incat totul sa fie cu cap si coada, ar fi asa... Plecam cu ABC ca in enunt. Construim unghiul x de 30°, iar ceviana corespunzatoare taie BC in M'. Cele de mai sus cu BM' in loc de BC/2 determina BM' = BM, deci M=M'... Fara aceasta ordine eu as taia in conditii de concurs 20% din puncte... Argumentul cu unicitatea presupune intelegerea tacita a acestei reformulari...)


---
df (gauss)
gauss
Grup: Administrator
Mesaje: 6909
27 May 2011, 02:49

[Trimite mesaj privat]


Am cautat si eu o solutie sintetica sa nu ma fac de rusine cu cele de mai sus.
Iata inca o posibilitate de a realiza constelatia triunghiului ABC intr-o constelatie "cunoscuta".

Fie DBC un triunghi echilateral, desenat "cu D-ul in sus"
Fie DD', BB', CC' inaltimile / bisectoarele / mediatoarele lui DBC.

In triunghiurile
BCB' si
DCD'
mai trasam si bisectoarele din B si respectiv D.
Acestea se intersecteaza din motive de simetrie intr-un punct de pe CC', pa care il notam cu prima litera accesibila, A.

Poza aproximativa
(latex nu stie decat pante rationale a/b cu a,b intregi mici in modul):





De aici incolo problema propusa nu mai prezinta probleme...



---
df (gauss)
TAMREF
Grup: membru
Mesaje: 1083
27 May 2011, 08:23

[Trimite mesaj privat]


[Citat]
[Citat]
In
.Aflati masura unghiului dintre inaltimea si mediana duse din varful
.

Unghiul dintre inaltime si mediana este de
.

Rezolvare:
Fie AH si AM inaltimea si respectiv mediana din varful A si D mijlocul laturii AC atunci triunghiul AHD este echilateral,unghiul DMH este egal cu unghiul HDM=15 grade sexagesimale si deci HM=HD=AH de unde rezulta ca tringhiul AHM este un triunghi dreptunghic isoscel si in concluzie unghiul dintre inaltimea si mediana din varful A este egal cu 45 de grade sexagesimale.
Nu mai stiu ce se invata in clasa a VI-a la geomtrie........O fi solutia asta una de clasa a VI-a?

yonutz1706
Grup: membru
Mesaje: 39
27 May 2011, 09:44

[Trimite mesaj privat]


Da! Este o solu?ie pentru un elev de clasa a VI-a.
Simpl? ?i elegant? !

[1]


Legendă:  Access general  Conţine mesaje necitite  47184 membri, 57892 mesaje.
© 2007, 2008, 2009, 2010 Pro-Didactica.ρ