Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
cretude
Grup: membru
Mesaje: 191
27 Sep 2022, 14:19

[Trimite mesaj privat]

functie    [Editează]  [Citează] 

Fie functia
,
.
Sa se arate ca functia data este strict crescatoare pe
.


---
Pasionat de matematica
gauss
Grup: Administrator
Mesaje: 6933
27 Sep 2022, 11:28

[Trimite mesaj privat]


Este functia data (strict) crescatoare pe cele trei "bucati" (doua intervale si punctul zero), care reprezinta cazurile separate specificate de definitia ei? Ce valori se iau pe fiecare bucata?


---
df (gauss)
cretude
Grup: membru
Mesaje: 191
27 Sep 2022, 12:34

[Trimite mesaj privat]


Pe fiecare interval diferit de 0 funcția este strict crescătoare (aș putea arăta aceasta cu semnul derivatei, cred), iar în 0, acesta nefiind interval păstrează monotonia. Funcția nefiind continuă în 0 n-am știut cum să abordez cazul cu 0. Pe celelalte intervale funcția este derivabilă fiind restricția unor funcții derivabile deci e clar.


---
Pasionat de matematica
gauss
Grup: Administrator
Mesaje: 6933
27 Sep 2022, 14:03

[Trimite mesaj privat]


Proprietatea de monotonie - crescatoare, ca sa fixam ideile - este o proprietate "punctuala" a unei functii f, ne dam doua puncte a si b din domeniul lui f cu

a < b

si vrem / încercam sa aratam - daca ne legam doar de definitie -

f(a) < f(b) .

Desigur, derivabilitatea (daca se aplica pentru f) ne permite sa analizam "altfel" monotonia, dar mereu este bine sa nu fim chiar fixati pe un mod de abordare.
In cazul de fata, pentru a aduna toate punctele s-ar putea sa fim constrânsi de situatie sa scriem "mai mult" daca este sa analizam toate modurile de a plasa cele doua puncte

a, b

pe axa. (Depinzând de gradul de "lenevie" la scris, cineva ar putea observa ca în cazul nostru f(-x) = -f(x) ca sa mai reduca din cazuri, dar daca e vorba de puncte într-un examen sau la olimpiade, si aceasta egalitate trebuie argumentata, astfel ca nu se câstiga prea mult.)

Avem putine cazuri:

a si b împreuna pe "prima bucata", a < b < 0.
a si b împreuna pe "a doua bucata", a < b si a = 0 si b=0 - nu se poate.
a si b împreuna pe "a treia bucata", 0 < a < b.

si apoi cazurile ramase:

a < b = 0 (a pe prima bucata, b pe a doua)
a < 0 < b (a pe prima bucata, b pe a treia)
a = 0 < b (a pe a doua bucata, b pe a treia)

De fiecare data relatia f(a) < f(b) rezulta simplu. Pentru primele trei cazuri nu este nevoie de folosirea derivabilitatii, cunostintele de clasa a saptea (cred) ajung sa manipulam inegalitati. De exemplu, daca 0 < a < b avem imediat a² < b² deci si f(a) = a² + 1 < b² + 1 = f(b).


---
df (gauss)
cretude
Grup: membru
Mesaje: 191
27 Sep 2022, 14:19

[Trimite mesaj privat]


Vă mulțumesc pentru explicații.


---
Pasionat de matematica
[1]


Legendă:  Access general  Conţine mesaje necitite  47557 membri, 58580 mesaje.
© 2007, 2008, 2009, 2010 Pro-Didactica.ρ