Autor |
Mesaj |
|
Fie p apartine N\{0,1},q>0 se cere valoarea limitei
limn-->oo[(qn+1)/qn]*[(qn+p+1)/(qn+p)]*....*[(qn+np+1)]/[(qn+np)]
|
|
si ca raspunsuri se dau :
A.(p)^√(p/q)
B.(p)^√(p+1)/q
C.(p)^√q/(p+q)
D.p*[(p)^√p/q]
E.[(p)^2]*[(p)^√p/q]
|
|
|
|
multumesc mult nu am reusit sa o gasesc singur
|