Autor |
Mesaj |
|
Calculati urmatoarea serie:
a>0
--- Da
|
|
In ce cadru a aparut problema si ce ati incercat in directia solutiei?
Ce stiti despre serii hipergeometrice?
Este un exercitiu aferent unui seminar, ce rezultate sunt cunoscute in acest seminar?
(Toate intrebarile sunt ca sa nu tiparim noi de exemplu notatii si informatii de pe https://en.wikipedia.org/wiki/Hypergeometric_functionhttps://ro.wikipedia.org/wiki/Serie_hipergeometrica...
De tiparit este destul...)
Si ca sa vedeti despre ce este vorba, incercati sa *calculati* (in sensul cuvântului a calcula) valoarea in punctele a=1 si a=2 . Daca reusiti nu sunteti departe de a "calcula" expresii legate de conjectura lui Riemann.
--- df (gauss)
|
|
Nu stiu cum sa rezolv exercitiu ,nivel anul 1 facultate este o serie m-am gandit cu rabbe-duhamel dar nu imi da,se poate sa ma puteti ajuta cu rezolvarea multumesc anticipat
--- Da
|
|
[Citat] Nu stiu cum sa rezolv exercitiu, nivel anul 1 facultate este o serie m-am gandit cu rabbe-duhamel dar nu imi da, se poate sa ma puteti ajuta cu rezolvarea multumesc anticipat |
Se cere *calculul seriei* sau doar daca converge / diverge?
Cititi atent ce scrieti!
--- df (gauss)
|
|
Criteriul raportului sau criteriul radacinii ,apoi criteriul Rabbe Duhamel (in cazul de dubiu ) si eventual,un criteriu de comparatie
--- Da
|
|
[Citat] Criteriul raportului sau criteriul radacinii ,apoi criteriul Rabbe Duhamel (in cazul de dubiu ) si eventual,un criteriu de comparatie |
Sunteti autist?
Ca sa intelegeti poate acum despre ce este vorba:
Inca o data, se cere sa *calculam* valoarea seriei?
Sa se cere *doar* studiul convergentei seriei?
--- df (gauss)
|
|
Imi cer scuze ,sa se studieze convergenta
--- Da
|
|
Termenii seriei sunt pozitivi, ajunge sa majoram cu o serie convergenta pentru a demonstra convergenta.
Pentru aceasta ajunge sa scriem:
--- df (gauss)
|