Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

Forum » Cereri de rezolvări de probleme » Demonstratie sir convergent.
[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
familotel
Grup: membru
Mesaje: 1
08 Nov 2016, 20:23

Demonstratie sir convergent.    [Editează]  [Citează] 

Să se demonstreze că
este convergent.
http://imgur.com/3j3vXqa Multumesc :D

gauss
Grup: Administrator
Mesaje: 6933
03 Nov 2016, 21:46

[Trimite mesaj privat]


[Citat]
Să se demonstreze că
este convergent.
http://imgur.com/3j3vXqa Multumesc :D


Desigur ca nu este tocmai cinstit sa dam aici solutia...
Miza este relativ mare, nu exact nota este miza, ci modul cinstit de a trece prin viata...

Pentru a face ceva cinstit, sa incercam sa facem ceva impreuna.
Incercati de exemplu sa tipariti tot enuntul in LaTeX...
(Cel ce va raspunde va avea de lucru mult mai mult.)

Incercati sa ne spuneti ce ati incercat, pentru ca ceva trebuie sa incercati...

Ceea ce fac pana una alta este sa programez sirul dat, doar asa ca sa vedem cum stau lucrurile "cand avem si numere"...
Codul folosit este cod sage, mathsage este un program liber pe care il recomand pentru a asista matematica si fizica de la clasa a V-a pana la facultate...


x = {} # dictionar
x[1] = 1.0
for n in [1..99]:
x[n+1] = x[n] + n^2 / sum( [ x[k] for k in [1..n] ] )

for n in [1..100]:
print x[n] / n


EDIT...
OBTINEM... (A se da un clic aici...)

Si obtinem:

sage: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
:x = {} # dictionar
:x[1] = 1.0
:for n in [1..99]:
: x[n+1] = x[n] + n^2 / sum( [ x[k] for k in [1..n] ] )
:
:for n in [1..100]:
: print x[n] / n
:--
1.00000000000000
1.00000000000000
1.11111111111111
1.18859649122807
1.23948478791917
1.27395878533316
1.29826571243483
1.31604082056042
1.32945258423154
1.33984439312208
1.34808028281683
1.35473521873954
1.36020350690476
1.36476281985715
1.36861331302430
1.37190227299437
1.37474008807332
1.37721085876649
1.37937960784367
1.38129728035964
1.38300427542969
1.38453298293117
1.38590963344756
1.38715566630368
1.38828875424819
1.38932358005087
1.39027243151747
1.39114566199872
1.39195205015364
1.39269908347057
1.39339318353188
1.39403988636279
1.39464398785695
1.39520966183260
1.39574055647904
1.39623987362112
1.39671043423145
1.39715473286636
1.39757498312804
1.39797315581501
1.39835101108365
1.39871012567896
1.39905191608638
1.39937765829356
1.39968850472229
1.39998549878838
1.40026958746496
1.40054163215915
1.40080241815821
1.40105266285858
1.40129302295547
1.40152410074199
1.40174644964316
1.40196057909028
1.40216695882517
1.40236602271009
1.40255817210801
1.40274377888849
1.40292318810631
1.40309672039367
1.40326467410085
1.40342732721545
1.40358493908660
1.40373775197662
1.40388599245997
1.40402987268674
1.40416959152559
1.40430533559947
1.40443728022552
1.40456559026948
1.40469042092336
1.40481191841440
1.40493022065238
1.40504545782115
1.40515775292033
1.40526722226157
1.40537397592418
1.40547811817358
1.40557974784642
1.40567895870511
1.40577583976480
1.40587047559521
1.40596294659945
1.40605332927203
1.40614169643771
1.40622811747288
1.40631265851101
1.40639538263337
1.40647635004641
1.40655561824668
1.40663324217449
1.40670927435709
1.40678376504223
1.40685676232287
1.40692831225367
1.40699845895994
1.40706724473958
1.40713471015858
1.40720089414048
1.40726583405032


Putem desigur incepe si cu x[1] = 100...
Obtinem...
REZULTATE


sage: x[1] = 100.
sage: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
:
:for n in [1..99]:
: x[n+1] = x[n] + n^2 / sum( [ x[k] for k in [1..n] ] )
:
:for n in [1..100]:
: print x[n] / n
:--
100.000000000000
50.0050000000000
33.3433330000167
25.0149987501708
20.0199970007564
16.6916608356462
14.3157042914105
12.5349842621514
11.1510878011612
10.0449670416278
9.14086416063101
8.38827386117462
7.75223086254389
7.20775989482458
6.73654569564152
6.32485175814536
5.96217363855665
5.64034116121694
5.35290413785461
5.09470237108975
4.86155851409836
4.65005469583920
4.45736741797620
4.28114372758485
4.11940710842284
3.97048508961257
3.83295294129533
3.70558943551367
3.58734176002548
3.47729744936513
3.37466174861198
3.27873922146101
3.18891870228897
3.10466090374588
3.02548814876677
2.95097581392148
2.88074516033566
2.81445729657748
2.75180807033651
2.69252372635570
2.63635719979276
2.58308493910557
2.53250417225993
2.48443054573075
2.43869607830647
2.39514738179154
2.35364410885604
2.31405759490650
2.27626966626051
2.24017159134231
2.20566315526880
2.17265184121563
2.14105210446003
2.11078472708661
2.08177624308976
2.05395842507283
2.02726782497951
2.00164536233601
1.97703595436705
1.95338818310028
1.93065399521434
1.90878843093349
1.88774937874149
1.86749735309041
1.84799529262789
1.82920837676668
1.81110385867977
1.79365091303032
1.77682049694129
1.76058522288079
1.74491924228824
1.72979813889697
1.71519883082340
1.70109948059349
1.68747941236538
1.67431903568563
1.66159977518473
1.64930400567895
1.63741499219948
1.62591683451747
1.61479441577648
1.60403335488178
1.59361996232931
1.58354119918787
1.57378463897473
1.56433843218908
1.55519127328941
1.54633236992051
1.53775141421297
1.52943855599403
1.52138437776271
1.51357987129497
1.50601641575616
1.49868575720853
1.49157998941091
1.48469153581644
1.47801313268179
1.47153781320852
1.46525889264349
1.45916995427133
sage:



Desigur ca putem face acelasi lucru pana la 10000...
Plec cu o valoare mai mare, cu 20162016 de exemplu
Daca tot trebuie sa fac asa ceva, prefer sa iau un program care calculeaza si mai exact. Desigur ca ajunge sa tinem minte "la un punct n" doar ultimul termen si suma pana la el...

Cod pari / gp:

{
x = 20162016. ;
s = x ;
for( n=2, 10000,
x = x + n^2 / s;
s = x + s;
if( (n<100) + (10000-n<100), print( "n=", n, " :: x(n) / n ~ ", x/n ) ) )
}


Obtinem:
REZULTATE


n=2 :: x(n) / n ~ 10081008.000000099196429563392867062500
n=3 :: x(n) / n ~ 6720672.0000001405282752148061956395930
n=4 :: x(n) / n ~ 5040504.0000001715271594533658802671353
n=5 :: x(n) / n ~ 4032403.2000001992194960398122420808858
n=6 :: x(n) / n ~ 3360336.0000002255341044378778961050306
n=7 :: x(n) / n ~ 2880288.0000002511795305730156206325952
n=8 :: x(n) / n ~ 2520252.0000002764657632876109892362505
n=9 :: x(n) / n ~ 2240224.0000003015453367739489513824498
n=10 :: x(n) / n ~ 2016201.6000003264999306317691756677755
n=11 :: x(n) / n ~ 1832910.5454548968307004705616461992335
n=12 :: x(n) / n ~ 1680168.0000003762019521628915382104994
n=13 :: x(n) / n ~ 1550924.3076927086870474971943406683170
n=14 :: x(n) / n ~ 1440144.0000004257657204628425046414845
n=15 :: x(n) / n ~ 1344134.4000004505222835076072264679154
n=16 :: x(n) / n ~ 1260126.0000004752694032221843214412094
n=17 :: x(n) / n ~ 1186000.9411769705987180028946474945525
n=18 :: x(n) / n ~ 1120112.0000005247478793859593827966639
n=19 :: x(n) / n ~ 1061158.7368426547463989977778441954122
n=20 :: x(n) / n ~ 1008100.8000005742177261865064318174956
n=21 :: x(n) / n ~ 960096.00000059895215046029990395625037
n=22 :: x(n) / n ~ 916455.27272789641435997257070048517206
n=23 :: x(n) / n ~ 876609.39130499624902341153143777282967
n=24 :: x(n) / n ~ 840084.00000067315997300534303176258680
n=25 :: x(n) / n ~ 806480.64000069789838114938097287654567
n=26 :: x(n) / n ~ 775462.15384687648443293966016539950293
n=27 :: x(n) / n ~ 746741.33333408071307014680126483183277
n=28 :: x(n) / n ~ 720072.00000077212278905536211108839744
n=29 :: x(n) / n ~ 695241.93103527962606557979573164120139
n=30 :: x(n) / n ~ 672067.20000082161369477714508878515762
n=31 :: x(n) / n ~ 650387.61290407216796742432207820852860
n=32 :: x(n) / n ~ 630063.00000087111087563629692385055258
n=33 :: x(n) / n ~ 610970.18181907767991718637148343640375
n=34 :: x(n) / n ~ 593000.47058915590816943277103162758856
n=35 :: x(n) / n ~ 576057.60000094536777896792207868250103
n=36 :: x(n) / n ~ 560056.00000097012286951805158149179142
n=37 :: x(n) / n ~ 544919.35135234623062682544657619035648
n=38 :: x(n) / n ~ 530579.36842207226852792941602866485074
n=39 :: x(n) / n ~ 516974.76923181362661201955797825063380
n=40 :: x(n) / n ~ 504050.40000106915591059769517316602931
n=41 :: x(n) / n ~ 491756.48780597196588780748820202749865
n=42 :: x(n) / n ~ 480048.00000111867938924461706901439320
n=43 :: x(n) / n ~ 468884.09302439925666764052321546998786
n=44 :: x(n) / n ~ 458227.63636480457067774027920450126289
n=45 :: x(n) / n ~ 448044.80000119297233183738620190424197
n=46 :: x(n) / n ~ 438304.69565339165159152110018602549402
n=47 :: x(n) / n ~ 428979.06383102973969662872680829100249
n=48 :: x(n) / n ~ 420042.00000126727361556284076029212940
n=49 :: x(n) / n ~ 411469.71428700632811392326148966053381
n=50 :: x(n) / n ~ 403240.32000131681197489136906416320451
n=51 :: x(n) / n ~ 395333.64706016511172308841813612953992
n=52 :: x(n) / n ~ 387731.07692444327645721060411293160326
n=53 :: x(n) / n ~ 380415.39622780621949405627202915930881
n=54 :: x(n) / n ~ 373370.66666808256427432121196968512468
n=55 :: x(n) / n ~ 366582.10909234976162411955744829076775
n=56 :: x(n) / n ~ 360036.00000146544445276520987547369817
n=57 :: x(n) / n ~ 353719.57894885863985078233067729010046
n=58 :: x(n) / n ~ 347620.96551875637303984185496412755433
n=59 :: x(n) / n ~ 341729.08474730248109049761004428602381
n=60 :: x(n) / n ~ 336033.60000156454526814576437331524492
n=61 :: x(n) / n ~ 330524.85246060571527937900092643667939
n=62 :: x(n) / n ~ 325193.80645322700213965885321994051401
n=63 :: x(n) / n ~ 320032.00000163887648215997015245348726
n=64 :: x(n) / n ~ 315031.50000166365452515833005292166519
n=65 :: x(n) / n ~ 310184.86154014997148858192334053112850
n=66 :: x(n) / n ~ 305485.09091080412106360076587516449250
n=67 :: x(n) / n ~ 300925.61194203649881031197110598328978
n=68 :: x(n) / n ~ 296500.23529588041819680433301686666727
n=69 :: x(n) / n ~ 292203.13043657016002612924208913053520
n=70 :: x(n) / n ~ 288028.80000181233191238739479860038562
n=71 :: x(n) / n ~ 283972.05633986528188559601996878431391
n=72 :: x(n) / n ~ 280028.00000186189419614970128373092481
n=73 :: x(n) / n ~ 276192.00000188667587507821564204486239
n=74 :: x(n) / n ~ 272459.67567758713357320172840283347958
n=75 :: x(n) / n ~ 268826.88000193624025315297804416441007
n=76 :: x(n) / n ~ 265289.68421248733872150243239086698844
n=77 :: x(n) / n ~ 261844.36363834944228824982472367064974
n=78 :: x(n) / n ~ 258487.38461739520460635435550304375078
n=79 :: x(n) / n ~ 255215.39240709866395383181315900915009
n=80 :: x(n) / n ~ 252025.20000206015669469403908256687454
n=81 :: x(n) / n ~ 248913.77777986271863167031485605338921
n=82 :: x(n) / n ~ 245878.24390454874967458297150303195140
n=83 :: x(n) / n ~ 242915.85542382125696643050159622226655
n=84 :: x(n) / n ~ 240024.00000215929492903590263471149142
n=85 :: x(n) / n ~ 237200.18823747819777606078046048290132
n=86 :: x(n) / n ~ 234442.04651383677254836708614722725347
n=87 :: x(n) / n ~ 231747.31034706123745728473790580906177
n=88 :: x(n) / n ~ 229113.81818407661897720171911377624749
n=89 :: x(n) / n ~ 226539.50562026075138135017812334340011
n=90 :: x(n) / n ~ 224022.40000230800964187329669095023175
n=91 :: x(n) / n ~ 221560.61538694818081999749370967356809
n=92 :: x(n) / n ~ 219152.34782844453949597587216055357330
n=93 :: x(n) / n ~ 216795.87097012430542935777064045596523
n=94 :: x(n) / n ~ 214489.53191730077413456014303964801117
n=95 :: x(n) / n ~ 212231.74737085299710429748105509577560
n=96 :: x(n) / n ~ 210021.00000245673201904726747034791812
n=97 :: x(n) / n ~ 207855.83505402791150025974246068530305
n=98 :: x(n) / n ~ 205734.85714536345051133025190702726811
n=99 :: x(n) / n ~ 203656.72727525836846154288921456019132
n=9901 :: x(n) / n ~ 2036.3618252488139829375863239268587339
n=9902 :: x(n) / n ~ 2036.1561737305269997277828079749539743
n=9903 :: x(n) / n ~ 2035.9505637454204842726709241030173167
n=9904 :: x(n) / n ~ 2035.7449952809137074321794706550469443
n=9905 :: x(n) / n ~ 2035.5394683244310206231842711798532497
n=9906 :: x(n) / n ~ 2035.3339828634018532551244943254650971
n=9907 :: x(n) / n ~ 2035.1285388852607101671720475278869035
n=9908 :: x(n) / n ~ 2034.9231363774471690669529472478843278
n=9909 :: x(n) / n ~ 2034.7177753274058779708195693953347268
n=9910 :: x(n) / n ~ 2034.5124557225865526456726844657323944
n=9911 :: x(n) / n ~ 2034.3071775504439740523321827976887510
n=9912 :: x(n) / n ~ 2034.1019407984379857904553962437149178
n=9913 :: x(n) / n ~ 2033.8967454540334915450019234292192913
n=9914 :: x(n) / n ~ 2033.6915915047004525342438666564966457
n=9915 :: x(n) / n ~ 2033.4864789379138849593203893915287389
n=9916 :: x(n) / n ~ 2033.2814077411538574553355041516601900
n=9917 :: x(n) / n ~ 2033.0763779019054885439980014916583376
n=9918 :: x(n) / n ~ 2032.8713894076589440878024316643126861
n=9919 :: x(n) / n ~ 2032.6664422459094347457500514095792050
n=9920 :: x(n) / n ~ 2032.4615364041572134306086492033279679
n=9921 :: x(n) / n ~ 2032.2566718699075727677101631730102058
n=9922 :: x(n) / n ~ 2032.0518486306708425552850067630236050
n=9923 :: x(n) / n ~ 2031.8470666739623872263320181072234091
n=9924 :: x(n) / n ~ 2031.6423259873026033120229499399023761
n=9925 :: x(n) / n ~ 2031.4376265582169169066404177496457095
n=9926 :: x(n) / n ~ 2031.2329683742357811340482247527585127
n=9927 :: x(n) / n ~ 2031.0283514228946736156929831344639117
n=9928 :: x(n) / n ~ 2030.8237756917340939401359518767805503
n=9929 :: x(n) / n ~ 2030.6192411682995611341140123619094748
n=9930 :: x(n) / n ~ 2030.4147478401416111351287038090932910
n=9931 :: x(n) / n ~ 2030.2102956948157942655622414712556910
n=9932 :: x(n) / n ~ 2030.0058847198826727083194413852877930
n=9933 :: x(n) / n ~ 2029.8015149029078179839944763366200223
n=9934 :: x(n) / n ~ 2029.5971862314618084295613885647052621
n=9935 :: x(n) / n ~ 2029.3928986931202266785872856012415223
n=9936 :: x(n) / n ~ 2029.1886522754636571429671464973811862
n=9937 :: x(n) / n ~ 2028.9844469660776834961791665598098109
n=9938 :: x(n) / n ~ 2028.7802827525528861580595695784312378
n=9939 :: x(n) / n ~ 2028.5761596224848397810958173904682266
n=9940 :: x(n) / n ~ 2028.3720775634741107382371474870797280
n=9941 :: x(n) / n ~ 2028.1680365631262546122213702291080523
n=9942 :: x(n) / n ~ 2027.9640366090518136864168580983023504
n=9943 :: x(n) / n ~ 2027.7600776888663144371786602693197948
n=9944 :: x(n) / n ~ 2027.5561597901902650277176766459833946
n=9945 :: x(n) / n ~ 2027.3522829006491528034818263626763073
n=9946 :: x(n) / n ~ 2027.1484470078734417890481466083775765
n=9947 :: x(n) / n ~ 2026.9446520994985701865247584866942282
n=9948 :: x(n) / n ~ 2026.7408981631649478754616374803203679
n=9949 :: x(n) / n ~ 2026.5371851865179539142691269426561164
n=9950 :: x(n) / n ~ 2026.3335131572079340431431338928486850
n=9951 :: x(n) / n ~ 2026.1298820628901981884959472432753901
n=9952 :: x(n) / n ~ 2025.9262918912250179688916194404747288
n=9953 :: x(n) / n ~ 2025.7227426298776242024848533517475440
n=9954 :: x(n) / n ~ 2025.5192342665182044159623370800965857
n=9955 :: x(n) / n ~ 2025.3157667888219003549854702398501855
n=9956 :: x(n) / n ~ 2025.1123401844688054961334260742250890
n=9957 :: x(n) / n ~ 2024.9089544411439625603454946442254959
n=9958 :: x(n) / n ~ 2024.7056095465373610278616531656508159
n=9959 :: x(n) / n ~ 2024.5023054883439346546603104175943331
n=9960 :: x(n) / n ~ 2024.2990422542635589903921729916596405
n=9961 :: x(n) / n ~ 2024.0958198320010488978091819962021428
n=9962 :: x(n) / n ~ 2023.8926382092661560736874696742198804
n=9963 :: x(n) / n ~ 2023.6894973737735665712432862370721819
n=9964 :: x(n) / n ~ 2023.4863973132428983240408480589969590
n=9965 :: x(n) / n ~ 2023.2833380153986986713910592194285936
n=9966 :: x(n) / n ~ 2023.0803194679704418852400592213890820
n=9967 :: x(n) / n ~ 2022.8773416586925266985465505547361715
n=9968 :: x(n) / n ~ 2022.6744045753042738351468606128044060
n=9969 :: x(n) / n ~ 2022.4715082055499235411066933099690458
n=9970 :: x(n) / n ~ 2022.2686525371786331175585265858995184
n=9971 :: x(n) / n ~ 2022.0658375579444744550236128197491309
n=9972 :: x(n) / n ~ 2021.8630632556064315692175400142520084
n=9973 :: x(n) / n ~ 2021.6603296179283981383383124456673617
n=9974 :: x(n) / n ~ 2021.4576366326791750418359103107259933
n=9975 :: x(n) / n ~ 2021.2549842876324679006622887361951810
n=9976 :: x(n) / n ~ 2021.0523725705668846190007773503864849
n=9977 :: x(n) / n ~ 2020.8498014692659329274738424488873641
n=9978 :: x(n) / n ~ 2020.6472709715180179278281746190025149
n=9979 :: x(n) / n ~ 2020.4447810651164396390960655188453091
n=9980 :: x(n) / n ~ 2020.2423317378593905452320383377243666
n=9981 :: x(n) / n ~ 2020.0399229775499531442236972944258983
n=9982 :: x(n) / n ~ 2019.8375547719960974986757623591997446
n=9983 :: x(n) / n ~ 2019.6352271090106787878662562137167739
n=9984 :: x(n) / n ~ 2019.4329399764114348612738112909782284
n=9985 :: x(n) / n ~ 2019.2306933620209837935750655641244734
n=9986 :: x(n) / n ~ 2019.0284872536668214411111165793121563
n=9987 :: x(n) / n ~ 2018.8263216391813189998220040533057675
n=9988 :: x(n) / n ~ 2018.6241965064017205646481921811627574
n=9989 :: x(n) / n ~ 2018.4221118431701406903980236233814522
n=9990 :: x(n) / n ~ 2018.2200676373335619540801179651287586
n=9991 :: x(n) / n ~ 2018.0180638767438325186996882626708150
n=9992 :: x(n) / n ~ 2017.8161005492576636985177501138950561
n=9993 :: x(n) / n ~ 2017.6141776427366275257721985108373681
n=9994 :: x(n) / n ~ 2017.4122951450471543188597285524138489
n=9995 :: x(n) / n ~ 2017.2104530440605302519775769151039047
n=9996 :: x(n) / n ~ 2017.0086513276528949262240617981407392
n=9997 :: x(n) / n ~ 2016.8068899837052389421568998778374683
n=9998 :: x(n) / n ~ 2016.6051690001034014738082796230128589
n=9999 :: x(n) / n ~ 2016.4034883647380678441556711400807775
n=10000 :: x(n) / n ~ 2016.2018480655047671020473535322325849
?


Si desigur ca daca tot am scris asa ceva nu e greu de vazut cum stau lucrurile la pasul n = 10^6, 10^7...

{
x = 20162016. ; s = x ; N = 10^6 ;
for( n=2, N, x = x + n^2 / s; s = x + s; );
print( "n=", N, " :: x(n) ~ ", x, " :: x(n) / n ~ ", x/N );
}


Obtinem:

n=1000000 :: x(n) ~ 20186810.099768716208968163585602977545 :: x(n) / n ~ 20.186810099768716208968163585602977545



{
x = 20162016. ; s = x ; N = 10^7 ;
for( n=2, N, x = x + n^2 / s; s = x + s; );
print( "n=", N, " :: x(n) ~ ", x, " :: x(n) / n ~ ", x/N );
}

Obtinem:

? #
timer = 1 (on)

n=10000000 :: x(n) ~ 22592823.103122178346761913721420134440 :: x(n) / n ~ 2.2592823103122178346761913721420134440
time = 5,125 ms.


Ma opresc aici.
Incercati sa dati solutia!


N.B. Este bine sa mentionati mereu nivelul propriu, cadrul in care a aparut problema, propriile incercari, ...


---
df (gauss)
gauss
Grup: Administrator
Mesaje: 6933
08 Nov 2016, 20:13

[Trimite mesaj privat]


Deoarece problema este una totusi deosebita ii dau enuntul in LaTeX
- cel ce a publicat-o a fost mai interesat de nota zece oferita -
si idea de demonstratie.

Enuntul mai întâi:

Problema de nota zece:



Cel ce a propus problema este rugat sa dea un [Citeaza] pe acest post, pentru a vedea cât de usor se tipareste in LaTeX asa ceva. (In definitiv, cei ce vâneaza nota zece trebuie sa fie pregatiti de vânatoare si de a învata sa vâneze...)



---
df (gauss)
gauss
Grup: Administrator
Mesaje: 6933
08 Nov 2016, 20:23

[Trimite mesaj privat]


IDEA de demonstratie este urmatoarea:
Sa se dea sens cumva sirului *FORMAL* de egalitati de mai jos,
egalitati scrise ca si cum limita L a sirului cerut exista si ca si cum putem aplica fara probleme Cesaro-Stolz:



---
df (gauss)
[1]


Legendă:  Access general  Conţine mesaje necitite  47559 membri, 58582 mesaje.
© 2007, 2008, 2009, 2010 Pro-Didactica.ρ