Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
npatrat
Grup: membru
Mesaje: 1592
04 Feb 2015, 11:25

[Trimite mesaj privat]

Expresie    [Editează]  [Citează] 


npatrat
Grup: membru
Mesaje: 1592
03 Feb 2015, 13:12

[Trimite mesaj privat]



gauss
Grup: Administrator
Mesaje: 6933
04 Feb 2015, 11:23

[Trimite mesaj privat]


[Citat]


Sa vedem daca ar fi vreo sansa si de mâna.
In primul rând putem izola multiplicativ din E partea

(x-y)(y-z)(z-x) .

Facem calculele si dam de diferenta celor doua expresii in functie de care trebuie sa exprimam E-ul. Pâna aici e bine.

Apoi trebuie sa ne luptam cu cautarea unui polinom S = S(P,Q) (am luat o alta litera libera) de doua variabile, P,Q, vom implânta imediat p si q in loc de P si Q, pentru care:

( xx + xy + yy ) ( yy + yz + zz ) ( zz + zx + xx )
=
S( p(x,y,z) , q(x,y,z) ) .

Pe partea stânga avem ceva omogen de grad 2+2+2 = 6.
Polinoamele p si q sunt homogene de grad 3 .
Ne asteptam sa gasim un S omogen (in P, Q) de grad 2.

Prima idee de cautare a lui S este sa facem z=0 in relatia de mai sus.

Cautam deci S cu

( xx + xy + yy ) ( yy ) ( xx )
=
S( xxy , xyy ) .

Deja suntem pe drumul cel bun...
Dam de S = PP + PQ + QQ + Rest.

Ramâne sa facem calcule cu polinoame simetrice, incercând sa exprimam Rest-ul in functie de acestea (si eventual si p+q si pq, singurele lucruri simetrice pe care le putem genera din p si q in mod natural.)

Dar restul este zero.



---
df (gauss)
npatrat
Grup: membru
Mesaje: 1592
04 Feb 2015, 11:25

[Trimite mesaj privat]


Multumesc!

[1]


Legendă:  Access general  Conţine mesaje necitite  47559 membri, 58582 mesaje.
© 2007, 2008, 2009, 2010 Pro-Didactica.ρ