Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
namwollip
Grup: membru
Mesaje: 25
30 Dec 2013, 20:30

[Trimite mesaj privat]

Intrebare    [Editează]  [Citează] 

Fie doua matrice A si B de ordin 3(in complex). Ce pot afla, cu ce ma poate ajuta relatia urmatoare?

071andrei
Grup: membru
Mesaje: 372
30 Dec 2013, 19:50

[Trimite mesaj privat]


evident eu cred ca A=B

gauss
Grup: Administrator
Mesaje: 6933
30 Dec 2013, 20:22

[Trimite mesaj privat]


[Citat]
evident eu cred ca A=B

Din pacate nu rezulta asa ceva.


---
df (gauss)
gauss
Grup: Administrator
Mesaje: 6933
30 Dec 2013, 20:30

[Trimite mesaj privat]


[Citat]



Matricea (A-B) este deci o matrice nilpotenta.
Este bine sa stim ceva despre clasificarea acestor matrici. Asta depinde de nivel.

La facultate cel tarziu se stie ca putem aduce aceasta matrice (A-B) printr-o schimbare de baza (peste numere complexe) in forma canonica Jordan formata din unul sau mai multe blocuri diagonale de forma urmatoare:

bloc 1x1
0

bloc 2x2
0 1
0 0

bloc 3x3
0 1 0
0 0 1
0 0 0

::::::::

(Blocuri diagonale de marimi mai mari pot apare doar pentru matrici mai mari.)
Doar primele doua blocuri sunt acceptabile pentru cazul in care puterea a doua se anuleaza (deja).

Deci matricea (A-B) este dupa o schimbare de baza fie matricea nula,
0 0 0
0 0 0
0 0 0
(caz in care putem sa uitam de schimbarea de baza)

fie o matrice de forma
0 1 | .
0 0 | .
--------
. . | 0
(Am pus punct in loc de 0-uri pentru a se vedea mai bine structura blocurilor.)

Chiar daca nu suntem la facultate, cei ce propun astfel de probleme la nivel de liceu folosesc implicit sau explicit aceasta caracterizare.

Link:
http://en.wikipedia.org/wiki/Nilpotent_matrix






---
df (gauss)
[1]


Legendă:  Access general  Conţine mesaje necitite  47559 membri, 58582 mesaje.
© 2007, 2008, 2009, 2010 Pro-Didactica.ρ