Autor |
Mesaj |
|
sa se determine daca functia u=(x patrat + y patrat)tg x/y satisface ecuatia x(du/dx) + y(du/dy)=2u (d-derivata)
--- zacon007
|
|
ia sa vedem cum stam:
du/dx=2xtg(x/y)+(x^2+y^2)inmultit cu (1/y)/cos^2(x/y)
xdu/dx=2x^2tg(x/y)+x(x^2+y^2)/(ycos^2(x/y))
du/dy=2ytg(x/y)+(x^2+y^2)(-1/y^2)/cos^2(x/y)
ydu/dy=2y^2tg(x/y)-y(x^2+y^2)/(y^2cos(x/y))=2y^2tg(x/y)-
-(x^2+y^2)/(ycos^2
(x/y))
Observam evident ca daca le adunam ramane:
2x^2tg(x/y)+2y^2tg(x/y) =2(x^2tg(x/y)+y^2tg(x/y)) adica exact 2u
succes
|
|
Multumesc frate,,iti ramin dator pe viata,,M - AI AJUTAT ENOOORM
--- zacon007
|
|
daca vrei sa colaboram lasa un numar de telefon
|