Autor |
Mesaj |
|
Fie paralelogramul
. Se alege un punct
exterior lui, astfel incat
. Aratati ca
.
|
|
[Citat] Fie paralelogramul
. Se alege un punct
exterior lui, astfel incat
. Aratati ca
. |
Unghiurile sunt orientate?
|
|
Nu...
|
|
Dac? nu, problema e gre?it?:
Dac? lucr?m cu unghiuri orientate, e OK. Indica?ie: fie F astfel ca AEFD sa fie paralelogram. Atunci ?i BEFC este paralelogram, iar CDFE e inscriptibil.
Uploaded with ImageShack.us
|
|
Va multumesc.
|
|
Enun?ul problemei ar fi trebuit formulat altfel, pentru a elemina ambiguit??ile:
în interiorul patrulaterului convex BCDE se consider? punctul A astfel ca ABCD s? fie paralelogram...etc
De curiozitate, care e sursa problemei?
|
|
2012/13 British Mathematical Olympiad
Round 2
1. Are there infinitely many pairs of positive integers (m, n) such that
both m divides n2 + 1 and n divides m2 + 1? 2. The point P lies inside triangle ABC so that < ABP = < PCA. The
point Q is such that PBQC is a parallelogram. Prove that < QAB =
< CAP.
3. Consider the set of positive integers which, when written in binary,
have exactly 2013 digits and more 0s than 1s. Let n be the number
of such integers and let s be their sum. Prove that, when written in
binary, n + s has more 0s than 1s.
4. Suppose that ABCD is a square and that P is a point which is on the
circle inscribed in the square. Determine whether or not it is possible
that PA, PB, PC, PD and AB are all integers.
|
|
[Citat]
2. The point P lies inside triangle ABC so that < ABP = < PCA. The
point Q is such that PBQC is a parallelogram. Prove that < QAB =
< CAP.
|
Da, în formularea asta lucrurile sunt clare.
|