Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

Forum » Cereri de rezolvări de probleme » sirul lui rolle
[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
blue6239
Grup: membru
Mesaje: 10
03 Jun 2012, 04:33

[Trimite mesaj privat]

sirul lui rolle    [Editează]  [Citează] 

x(la puterea a 3a)- 2mx(x la puterea a 2a)+x+3=0

Multumesc!


---
blue
gauss
Grup: Administrator
Mesaje: 6933
28 May 2012, 16:00

[Trimite mesaj privat]


Ce se da si ce se cere? (Cine este m? Ce vrea problema de la noi?)
Multumesc!


---
df (gauss)
blue6239
Grup: membru
Mesaje: 10
28 May 2012, 16:10

[Trimite mesaj privat]


Sa se discute,dupa valorile parametrului real m,numarul radacinilor reale


---
blue
gauss
Grup: Administrator
Mesaje: 6933
02 Jun 2012, 14:20

[Trimite mesaj privat]





EDITARE TARZIE:
Solutia pe care am avut-o in vedere cand am tiparit cele de mai sus corespundea celor introduse in computer...

sage: var( 'm' )
m
sage: var( 'm' );
sage: f(x) = x^3 -2*m*x^2 +x +3
sage: g = diff(f,x)
sage: g(x)
-4*m*x + 3*x^2 + 1
sage:
sage: a = ( 2*m - sqrt( 4*m^2 -3 ) ) / 3
sage: b = ( 2*m + sqrt( 4*m^2 -3 ) ) / 3
sage:
sage: ( f(a)*f(b) ) . expand() . factor()
-1/27*(8*m - 13)*(12*m^2 + 20*m + 19)


Cele de mai sus revin uman la ceva foarte complicat de calculat, dar calculatorul nu are probleme. Cu cele de mai sus putem usor vedea cate schimbari de semn avem in sirul lui Rolle asociat lui f.

Fara a face apel la sirul lui Rolle putem argumenta si asa.
Sa zicem ca g = f' are doua radacini reale diferite, a si b mai sus.
Atunci
  • f este strict crescatoare de la -oo in -oo la f(a) in a,
  • f este strict descrescatoare de la f(a) in a la f(b) in b,
  • f este strict crescatoare de la f(b) in b la +oo in +oo .

    In particular avem a < b (prin alegerea semnului -/+) si f(a) > f(b) .

    Avem atunci 3 radacini reale pentru f daca si numai daca intre a si b are loc o schimbare de semn, deci daca si numai daca f(a) f(b) < 0 .
    Sirul lui Rolle asociat lui f pentru intreaga axa reala ne obliga sa ne uitam la acelasi produs f(a) f(b) .

    Cu calculatorul am vazut mai sus ca f(a)f(b) este o expresie polinomiala de grad III in m, ea se factorizeaza, factorul care da semnul este -(8m-13) .

    Nota:
    Deoarece gandirea mea este indoctrinata algebric, nu am avut nici o sansa sa izolez dependenta de m intr-o functie asemanatoare cu o singularitate introdusa in 0, neplacere corectata usor daca spargem intervalul real in doua bucati ca in solutia eleganta de mai jos.

    Chiar mai rau, am calculat pentru a ma convinge ca lucrurile stau bine si discriminantul ecuatiei de gradul III date...
    http://en.wikipedia.org/wiki/Discriminant
    Pentru tiparit mai modest m-am legat mai intai de polinomul translatat cu 2m/3...

    sage: h(m,x) = x^3 -2*m*x^2 +x +3
    sage: h(m, x+2*m/3).expand()
    -16/27*m^3 - 4/3*m^2*x + x^3 + 2/3*m + x + 3
    sage: p = 1-4/3*m^2 # coeficientul in x
    sage: q = -16/27*m^3 + 2/3*m + 3 # coeficientul liber (de x)
    sage:
    sage: factor( -4*p^3 -27*q^2 )
    (8*m - 13)*(12*m^2 + 20*m + 19)


    Discriminantul este produsul patratelor de diferente de cate doua radacini.
    (Ca si in cazul unui polinom de grad II.)
    Pentru un polinom de grad III cu coeficienti REALI
    - discriminantul este nul, daca cel putin doua radacini coincid, toate radacinile sunt atunci reale,
    - discriminantul este >0, daca radacinile sunt reale diferite
    - discriminantul este <0, daca radacinile sunt diferite, una este reala celelalte complex conjugate, nereale.


  • ---
    df (gauss)
    enescu
    Grup: moderator
    Mesaje: 3403
    02 Jun 2012, 16:02

    [Trimite mesaj privat]


    Putem reduce calculele transformând ecua?ia astfel încât la derivare s? dispar? parametrul.

    cristi2011
    Grup: membru
    Mesaje: 345
    02 Jun 2012, 16:52

    [Trimite mesaj privat]


    [Citat]


    Despre care teorema a lui Rolle e vorba?

    enescu
    Grup: moderator
    Mesaje: 3403
    03 Jun 2012, 02:14

    [Trimite mesaj privat]


    [Citat]



    Despre care teorema a lui Rolle e vorba?

    Nu e Rolle, e proprietatea lui Darboux. Mai de mult am f?cut ?i eu observa?ia asta, dar Gauss nu vrea s? o ia în considerare

    gauss
    Grup: Administrator
    Mesaje: 6933
    03 Jun 2012, 04:33

    [Trimite mesaj privat]


    [Citat]

    Nu e Rolle, e proprietatea lui Darboux. Mai de mult am f?cut ?i eu observa?ia asta, dar Gauss nu vrea s? o ia în considerare


    Multumesc mult, cer scuze, de acum incolo e luata in considerare!


    ---
    df (gauss)
    [1]


    Legendă:  Access general  Conţine mesaje necitite  47558 membri, 58582 mesaje.
    © 2007, 2008, 2009, 2010 Pro-Didactica.ρ