Autor |
Mesaj |
|
am si eu doua probleme,va rog sa ma ajutati daca se poate si sa fiti cit mai explicit,va rog,detaliile sint esentiale pentru mine fiind un incepator in matematica,prima problema este:Se considera triunghiul echilateral ABC inscris intr-un cerc cu centrul O.Sa se arate ca OA vectorial + Ob vectorial +OB vectorial +OC vectorial=cu O vectorial,va rog cit mai explicit
--- Totul din pasiune pentru Matematica!!
|
|
Se ia triunghiul echilateral ABC cu centrul in O.
Se calculeaza suma (vectoriala) OA+OB (peste tot vor fi doar vectori).
Pentru aceasta se "compune" paralelogramul OAC'B (avem trei varfuri).
Ei bine, unde se afla C'?
(Fata de O si fata de C...)
Se foloseste de exemplu faptul ca centrul de greutate G al triunghiului este de fapt O... (si se afla la doua treimi de C fata de doar o treime fata de mijlocul lui AB).
Solutia directa foloseste egalitatea
XA + XB + XC = 3 . XG pentru orice A,B,C,X si pentru G punctul de greutate al triunghiului ABC...
--- df (gauss)
|