Autor |
Mesaj |
|
Buna ziua !
Am o inegalitate pe care trebuie sa o demonstrez :
(a²+b²) / (a+b) + (b²+c²) / (b +c) +( c²+a²) / ( c+ a) >= a + b +c.
De la ce ar trebui sa pornesc ca sa o rezolv?
Multumesc anticipat ! EDIT: unde
.
|
|
De la scrierea membrului drept ca o suma de trei expresii, asa cum e si membrul stang: una cu a,b, una cu b,c si una cu c,a. Astfel, inegalitatea s-ar putea demonstra prin adunarea a trei inegalitati mai simple, fiecare cu cate 2 variabile.
|
|
Va multumesc mult,dar nu am reusit s-o rezolv. Cum ar trebui s-o fac?
|
|
|
|
Multumesc foarte mult! Am inteles si am rezolvat-o.
|
|
Excelent! In cazul acesta am o invitatie la cate o generalizare intr-o directie sau alta... Cred ca jocul asta este mult mai atractiv decat cel cu culegerile de maxime si cugetari.
Cum am putea deci generaliza cele de mai sus, astfel incat sa acoperim de exemplu si una sau alta din inegalitatile urmatoare (lasate de mine voit neterminate)?
Cand are loc egalitatea in fiecare caz?
--- df (gauss)
|