Explicit:
[ equation]$x_n$[ /equation] = [ equation]$(1+\frac{1}{(n+1)^t})$[ /equation][ equation]$(1+\frac{1}{(n+2)^t})$[ /equation][ equation]$\dots$[ /equation][ equation]$(1+\frac{1}{(2n)^t})$[ /equation] , n[ equation]$\in$[ /equation] N\{0}
ASA CEVA NU SE FACE.
ATATA IESIT SI INTRAT DIN MATEMATICA STRICA PRIVIRII...
Ce este mult mai bine:
[ equation]
$$
x_n =
(1+\frac{1}{(n+1)^t})
(1+\frac{1}{(n+2)^t})
\dots
(1+\frac{1}{(2n)^t})
\ , \ n\in \N\setminus \{ 0 \}\ .
$$%
[ /equation]
Iata cum se compileaza cele de mai sus:
Si mai bine, deoarece ma supara parantezele:
[ equation]
$$
x_n =
\left( 1+\frac{1}{(n+1)^t} \right)
\left( 1+\frac{1}{(n+2)^t} \right)
\dots
\left( 1+\frac{1}{(2n)^t} \right)
\ , \
n\in \N\setminus \{ 0 \}\ .
$$%
[ /equation]
Iata cum se compileaza cele de mai sus: