Autor |
Mesaj |
|
In exemplele prezentate mai jos trebuie sa anulati spatiul gol din expresia "[ equation]".
Daca utilizati Firefox , folositi combinatia de taste:
pentru ca schimbarile pe care le faceti in Latex sa fie vizibile imediat. Tips&tricksPentru a intelege mai bine limbajul Latex apasati butonul "citeaza" corespunzator mesajelor postate pe site.
Util pentru a intelege limbajul LATEX este site-ul http://www.codecogs.com/latex/eqneditor.php
[ equation]$LATEX$[/equation]
[ equation]$\answer{LATEX}$[/equation] Latex
[ toggle=Latex][ equation]$LATEX$[/equation]
[url target="_blank"]http://www.pro-didactica.ro/
[ url]http://www.pro-didactica.ro/
Multimi de numere
[ equation]$\N,\Z,\Q,\R,\C$[/equation]
|
|
a ori b se obtine scriind:
[ equation]$ a \cdot b $[/equation]
|
|
a supra b se obtine scriind:
[ equation]$\frac{a}{b}$[/equation]
|
|
radical din a se obtine scriind:
[ equation ]$\sqrt{a}$[/equation]
[ equation]$\sqrt[3]{a}$[/equation]
|
|
[ equation]$\sqrt{\frac{a+b}{a-b}}$[/equation]
|
|
[ equation ]$a^2-b^2=(a-b)\cdot(a+b)$[/equation]
[ equation]$\C_{6}^{2}=\frac{6!}{2!\cdot(6-2)!}$[/equation]
|
|
[ equation]$\sum_{k=1}^n k=\frac{n\cdot(n+1)}{2}$[/equation]
[ equation]$\displaystyle\sum_{k=1}^n k=\frac{n\cdot(n+1)}{2}$[/equation]
[ equation]$\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$[/equation]
[ equation]$\displaystyle\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$[/equation]
|
|
[ equation ]$\int_0^1{xdx}=\frac{x^2}{2}|_0^1$[/equation]
[ equation]$\lim_{x \to \infty } \frac{1}{x^n } = 0$[/equation]
[ equation]$\displaystyle\lim_{{x \to \infty }} \frac{1}{x^n } = 0$[/equation]
|
|
[ equation]$\sqrt{\alpha+\beta+\gamma+\omega}$[/equation]
[ equation]$\underbrace{n(n-1)(n-2)\dots(n-m+1)}_{\mbox{m factori}}$[/equation]
|
|
[ equation]$\sqrt{2}\approx 1,41$[/equation ]
[ equation]$100\%$[/equation]
|
|
[ equation]$\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{bmatrix}$[/equation]
[ equation]$\begin{vmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{vmatrix}$[/equation]
[ equation]$\begin{pmatrix}
a_{11} & b_{12} & c_{13} \\
d & e & f \\
g & h & i \\
\end{pmatrix}$[/equation]
[ equation]$\left \lbrace \begin{matrix}2x+y&=&3 \\x-y&=&1\end{matrix} \right. \longleftrightarrow ........$[/equation]
|