Scriem 3^3=9, 2^3=8, impartim peste tot cu 9^k si ramane sa rezolvam (deci sa determinam) valorile lui k pentru care avem sirul de inegalitati:
E o chestie de gust cea cu scrierea lui (1 - 1/9) in loc de 8/9. Cer scuze.
In primul rand observam ca expresia ce trebuie sa stea intre 1 si 3 (in ultimul sir de inegalitati) tinde la 0.
Deci de la o vreme (pentru k suficient de mare incepand cu un anume k0) expresia va scapa (pentru totdeauna) sub 1.
Calculez aceasta valoare cu computerul:
sage: (ln(2) / ln(9/8) ) . n()
5.88494919236172
(Deci k0=6, de aici incolo sirul de inegalitati e fals.)
Intr-adevar, pentru k = 5 avem
Ramane sa vedem pentru care dintre valorile lui k intre 0,1,2,3,4,5 are loc intregul sir de inegalitati. Doar pentru 0,1,2.
Cu computerul:
Ruland obtinem:
k=0
(True) & (True) & (True) & (True) & (True)
The given sequence of inequalities is TRUE
k=1
(True) & (True) & (True) & (True) & (True)
The given sequence of inequalities is TRUE
k=2
(True) & (True) & (True) & (True) & (True)
The given sequence of inequalities is TRUE
k=3
(True) & (True) & (False) & (True) & (True)
The given sequence of inequalities is FALSE
k=4
(True) & (True) & (False) & (True) & (True)
The given sequence of inequalities is FALSE
k=5
(True) & (True) & (False) & (True) & (True)
The given sequence of inequalities is FALSE
k=6
(False) & (True) & (False) & (True) & (True)
The given sequence of inequalities is FALSE
k=7
(False) & (True) & (False) & (True) & (True)
The given sequence of inequalities is FALSE
k=8
(False) & (True) & (False) & (True) & (True)
The given sequence of inequalities is FALSE
k=9
(False) & (True) & (False) & (True) & (True)
The given sequence of inequalities is FALSE
k=10
(False) & (True) & (False) & (True) & (True)
The given sequence of inequalities is FALSE