Autor |
Mesaj |
|
(eroare: eq.0/26557)
\[
\begin{aligned}
f(x) &=
\left(
\frac 1{0!} +
\frac 1{1!}x^{1/2} +
\frac 1{2!}x^1 +
\frac 1{3!}x^{3/2} +
\frac 1{4!}x^2 +
\frac 1{5!}x^{5/2} +
\frac 1{6!}x^3 +
\dots
\right)
+
\left(
\frac 1{0!} -
\frac 1{1!}x^{1/2} +
\frac 1{2!}x^1 -
\frac 1{3!}x^{3/2} +
\frac 1{4!}x^2 -
\frac 1{5!}x^{5/2} +
\frac 1{6!}x^3 +
\dots
\right)
\\
&=
2\left(
\frac 1{0!}x^0 +
\frac 1{2!}x^1 +
\frac 1{4!}x^2 +
\frac 1{6!}x^3 +
\dots
\right)
\end{aligned}
\]
--- df (gauss)
|
|
(eroare: eq.0/26558)
\[
\begin{aligned}
f(x) &=
\left(
\frac 1{0!} +
\frac 1{1!}x^{1/2} +
\frac 1{2!}x^1 +
\frac 1{3!}x^{3/2} +
\frac 1{4!}x^2 +
\frac 1{5!}x^{5/2} +
\frac 1{6!}x^3 +
\dots
\right)
+
\left(
\frac 1{0!} -
\frac 1{1!}x^{1/2} +
\frac 1{2!}x^1 -
\frac 1{3!}x^{3/2} +
\frac 1{4!}x^2 -
\frac 1{5!}x^{5/2} +
\frac 1{6!}x^3 +
\dots
\right)
\end{aligned}
\]
--- df (gauss)
|
|
--- df (gauss)
|
|
--- df (gauss)
|
|
--- df (gauss)
|
|
Debug, debg, debug!
Iese cum zasie si ieshanu...
Debug pishoarili in ieli!
--- df (gauss)
|