Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
petrebatranetu
Grup: moderator
Mesaje: 3161
28 Mar 2010, 19:59

[Trimite mesaj privat]

Daca...    [Editează]  [Citează] 

Daca
si
sunt masurile laturilor unui triunghi, atunci
,
,
sunt de asemenea masurile laturilor unui triunghi.


---
Doamne ajuta...
Petre
minimarinica
Grup: moderator
Mesaje: 1536
28 Mar 2010, 11:10

[Trimite mesaj privat]


[Citat]
Daca
si
sunt masurile laturilor unui triunghi, atunci
,
,
sunt de asemenea masurile laturilor unui triunghi.

da


---
C.Telteu
petrebatranetu
Grup: moderator
Mesaje: 3161
28 Mar 2010, 15:35

[Trimite mesaj privat]


ei,na!


---
Doamne ajuta...
Petre
gauss
Grup: Administrator
Mesaje: 6933
28 Mar 2010, 16:22

[Trimite mesaj privat]


(Problema este pusa intr-o forma care strfiga dupa reformulari... Vom tot reformula si la sfarsit suntem gata.)

Din motive de ocuparea a notatiei sunt nevoit sa notez cu

laturile triunghiului care este dat a fi triunghi. Se cere sa demonstram ca atunci si

sunt laturile unui triunghi.
[De fapt nu chiar asa, in enunt se ia cazul particular unde 1/a = 2 x (doua mii si ceva). De la o vreme particularizarile astea nu mai sunt nostime deloc. In definitiv, oamenii trebuie in matematica la unul dintre primii pasi si estetica matematicii. S-o facem macar pentru cei ce fac acum primii pasi!
Uneori, particularizarile mai au un sens, de exemplu cand avem o problema de divizibilitate si nu este evident care divizor al lui 2010 este cel care este de preferat. Omul mai incearca, mai invata ceva si de obicei pentru divizori diferiti apar si argumentari "diferite". Dar daca din 2010 si 1/2 trebuie sa-mi asociez eu un a si acest a poate fi aiurea in (0,1], atunci nu este nimic picant in a particulariza... Matematica este universala, in orice caz mai universala decat tendinta de a studia zilnic proprietatile numerelor dintre 2010 si 2210. "Gluma" din urma e valabila inca de pe vremea congreselor. ]

Bun, fara a restrange generalitatea, putem considera ca x este latura cea mai mare. (Una din ele mai exact.) Atunci si x^a este mai mare (sau egal) decat y^a,z^a, functia putere fiind crescatoare pentru puterea a>0.
Impartind cu x si respectiv x^a problema se reformuleaza echivalent:

Fie a in (0,1].
Date y,z numere reale in intervalul (0,1] cu y+z>1, sa se arate ca y^a+z^a>1.

(Asta este forma destelenita!)

Acest lucru rezulta imediat acum din:

De exemplu:
daca y=0,49 si z=0,64 si a=1/2 atunci avem

0,7+0,8 = (0,49)^1/2 + (0,64)^1/2 > 0,49+0,64 >1 .

N.B.


---
df (gauss)
minimarinica
Grup: moderator
Mesaje: 1536
28 Mar 2010, 19:59

[Trimite mesaj privat]


[Citat]
Daca
si
sunt masurile laturilor unui triunghi, atunci
,
,
sunt de asemenea masurile laturilor unui triunghi.


Problema, face parte dintr-o multime de de probleme foarte asemanatoare, care nu lipsesc din aproape nici o culegere de probleme de algebra (capitolul ecuatii si inecuatii exponentiale). Pe aceste probleme le putem include in generalizarea urmatoare:


Daca
cu
si exista
astfel incat
, atunci
(In cazul in care axista egalitate intre a,b,si c, problema este evidenta)

Demonstratie:
Fie
care este strict descrescatoare.
Atunci:




---
C.Telteu
[1]


Legendă:  Access general  Conţine mesaje necitite  47559 membri, 58582 mesaje.
© 2007, 2008, 2009, 2010 Pro-Didactica.ρ