Autor |
Mesaj |
|
cum se poate calcula derivata de ordinul n a lui y=arctg(x) ?
|
|
[Citat] cum se poate calcula derivata de ordinul n a lui y=arctg(x) ? |
Poti s-o calculezi ca serie de puteri, poti cel mult s-o exprimi sub forma
unde
este un polinom de gradul
. Dar nu cred ca poti gasi o formula mai explicita. De altfel, nici nu avem neaparata nevoie de formule mai explicite.
---
Euclid
|
|
ah, si trebuie calculata in functie de y, am uitat sa precizez.
daca scriu ca
dar nu stiu mai departe
sau daca descompun
x^2 + 1 aici la numitor dar nu stiu de ce nu apare
|
|
Nu intelegem intrebarea. Poti te rog sa reformulezi problema? Ce se da? Ce se cere?
---
Euclid
|
|
sa se calculeze derivata de ordinul n a functiei y=arctg(x) in functie de y
|
|
Consideram functia
Derivata de ordinul n a acestei functii se calculeaza usor, daca acceptam ca regulile derivarii de functii RATIONALE reale de o variabila reala se extind la cele complexe de o variabila complexa. Asa este, a se vedea de exemplu analiza complexa din facultate. (Functie rationala = cat de functii polinomiale.)
Rezulta imediat:
--- df (gauss)
|