Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

Forum » Cereri de rezolvări de probleme » problema probabilitati
[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
noGooD
Grup: membru
Mesaje: 5
25 Mar 2010, 04:26

[Trimite mesaj privat]

problema probabilitati    [Editează]  [Citează] 

Buna ziua,

Am dat peste o problema cu probabilitati si dat fiind faptul ca a trecut ceva vreme de cand am lucrat cu ele, apelez la ajutorul dumneavoastra. Enuntul problemei arata cam asa :

Aruncand Y zaruri cu 6 fete, care este probabilitatea ca cel putin X sa fie "4uri"?
(aruncand sapte zaruri (normale, cu sase fete), care este probabilitatea ca cel putin trei din ele sa fie 4?)

In majoritatea locurilor unde am cautat, am gasit rezolvari pentru probleme de gen "mai multe aruncari" "cel putin un 4". Ceea ce eu am nevoie este "mai multe aruncari", "cel putin (mai mult de 1) 4" (sper sa ma intelegeti).

probabilitatea ca din mai multe aruncari cel putin un zar sa fie 4 este
1-(probabilitatea ca niciun zar sa nu fie 4)

probabilitatea ca niciun zar sa nu fie 4 este (probabilitatea ca zarul 1 sa nu fie 4)*(probabilitatea ca zarul 2 sa nu fie 4)*...

probabilitatea ca zarul 1 sa nu fie 4 este 1-(probabilitatea ca zarul sa fie 4)

probabilitatea ca zarul sa fie 4 este 1/6.



Va multumesc si va astept cu nerabdare raspunsurile.

Euclid
Grup: Administrator
Mesaje: 2659
11 Mar 2010, 03:32

[Trimite mesaj privat]


[Citat]
Buna ziua,

Am dat peste o problema cu probabilitati si dat fiind faptul ca a trecut ceva vreme de cand am lucrat cu ele, apelez la ajutorul dumneavoastra. Enuntul problemei arata cam asa :

Aruncand Y zaruri cu 6 fete, care este probabilitatea ca cel putin X sa fie "4uri"?
(aruncand sapte zaruri (normale, cu sase fete), care este probabilitatea ca cel putin trei din ele sa fie 4?)

In majoritatea locurilor unde am cautat, am gasit rezolvari pentru probleme de gen "mai multe aruncari" "cel putin un 4". Ceea ce eu am nevoie este "mai multe aruncari", "cel putin (mai mult de 1) 4" (sper sa ma intelegeti).

probabilitatea ca din mai multe aruncari cel putin un zar sa fie 4 este
1-(probabilitatea ca niciun zar sa nu fie 4)

probabilitatea ca niciun zar sa nu fie 4 este (probabilitatea ca zarul 1 sa nu fie 4)*(probabilitatea ca zarul 2 sa nu fie 4)*...

probabilitatea ca zarul 1 sa nu fie 4 este 1-(probabilitatea ca zarul sa fie 4)

probabilitatea ca zarul sa fie 4 este 1/6.



Va multumesc si va astept cu nerabdare raspunsurile.


P?strând nota?iile dv. (Y zaruri ?i un minim X de cazuri favorabile -- rezultatul egal cu 4), problema se abordeaz? în mod standard calculând separat probabilit??ile
de a ob?ine EXACT i cazuri favorabile ?i apoi adunând rezultatele pentru
.

Rezultatul final este





---
Euclid
noGooD
Grup: membru
Mesaje: 5
14 Mar 2010, 19:34

[Trimite mesaj privat]


In primul rand vreau sa va multumesc pentru raspuns.

As dori apoi sa va intreb (dat fiind faptul ca am gasit alt tip de raspuns la aceasta problema), daca urmatoarea abordare este corecta:

rezultat=(suma cazurilor favorabile)/(numarul total de cazuri).

Din cate imi amintesc, formula prezentata de dumneavoastra este cea corecta..

Va multumesc inca o data.

gauss
Grup: Administrator
Mesaje: 6933
25 Mar 2010, 04:26

[Trimite mesaj privat]


Formula de mai sus este cea mai simpla in teoria (naiva) a probabilitatilor.
Lucrurile se contureaza mai bine, daca incercam sa ne concentram atentia asupra MULTIMII CAZURILOR si a incercarii de a le numara pe cele favorabile dupa aceea.

Convenim destul de repede ca multimea tuturor cazurilor este

Omega = { 1,2,3,4,5,6 } ^ Y

anume produsul cartezian al multimii { 1,2,3,4,5,6 } cu ea insesi de Y ori.
Cate elemente are?
6^Y, desigur...

Un element din Omega il vom nota ca un tuplet, de exemplu daca Y este 7, un element este

( 1,4,2,6,6,1,5 )

si corespunde obinerii in ordine a rezultatelor 1,4,2,6,6,1,5 la aruncarea de Y=7 ori cu zarul, o astfel de aruncare fiind "experimentul" nostru.

Foarte repede ne dam seama, ca e bine sa asezam astfel de *rezultate* in "sertare", adica in adunaturi de rezultate posibile. Aceste sertare se numesc evenimente intre cei ce fredoneaza mai des probabilitatile.
Notand cu * ORICE ALTCEVA decat 4, deci ceva intre 1,2,3, 5,6, elementul de mai sus se afla in "sertarul"

( *,4,*,*,*,*,* )

Cate elemente (tuplete) se afla in acest "sertar"?
Pai cam 5x1x5x5x5x5x5 ...

Partea cu numaratul este acum aproape terminata.
Urmam urmatoarea strategie:

- Fie i in numar care se plimba de la 0 la Y.
- cate "sertare" putem construi, astfel incat apare de exact i ori specificatia 4 pentru respectivele intrari ale unui tuplet din Omega? Pai un astfel de sertar este determinat de locurile unde se afla 4-urile. Aceste locuri formeaza o submultime a multimii pozitiilor {1,2,...,Y}. Exemplu:
Sertarul ( *,4,*,*,4,*,4 ) corespunde submultimii { 2,5,7 } a multimii pozitiilor {1,2,3,...,7}. Cate astfel de sertare cu exact i intrari specificate a fi 4 exista. Desigur ca:

(combinari de Y luate cate 4).

- Fixand un astfel de "sertar" (eveniment), cate elemente (tuplete la noi) "coresupund acestui sertar" (se afla in evenimentul respectiv)? Desigur ca

Adunand avem:
Numarul cazurilor favorabile este:

Numarul total de cazuri (numarul de elemente in Omega) este:

Facand raportul obtinem acelasi rezultat ca mai sus.

N.B. Rezultatul de mai sus a putut fi scris imediat, deoarece s-a considerat cu "bunul simt cuvenit" drept spatiu modelator urmatorul:

In geometrie am vazut ca din figuri de pe o dreapta sau plan putem "genera" figuri in spatiu. Numim acest lucru "jocuri cu figuri" poate. O prisma este de exemplu un produs cartezian al punctelor bazei cu punctele unei generatoare fixate. Tot asa, din mai multe spatii de probabilitate se pot confectiona noi, aplicam "operatii cunoscute" cu astfel de spatii.

La noi, putem pleca cu un prim spatiu "de baza" sau "elementar" care sa fie:

{1,2,3,4,5,6} cu multe elemente, dar toate cu aceeasi probabilitate, 1/6, sau
{ 4, * } cu putine elemente, dar probabilitatea repartizata neuniform, anume 1/6 pentru 4 si 5/6 pentru *.

Un "joc cu astfel de spatii" este de a combina "experimente simple" prin a lua produse carteziene (repetate). Este mai mult sau mai putin clar care sunt atunci probabilitatile...
In cazul uniform, probabilitatea totala 1 este impartita echitabil la 6 rezultate elementare, este "clar" ca obtinem tot o impartire homogena, daca trecem la experimente "derivate" sau "repetate" plecand de la cele elementare. Numaratoarea este insa mai complicata (poate).
In celalalt, trebuie sa avem grija cum este repartizata probabilitatea... Ei bine, cam ca in cele explicate mai sus.

Tema de casa:

La pokerul "de pici mici" sunt 8x4 carti. Unui jucator i se distribuie 5 carti. care este probabilitatea de a fi servit cu un "full", deci cu o constelatie de forma XXXYY dupa (re)aranjarea cartilor.

Aceeasi intrebare pentru poker-ul cu toate 52=13x4 cartile.

(Deseori recomandam scrierea unui program care ia cazurile in parte! Atat rezolvarea "teoretica" cat si cea cu computerul sunt utile pentru anumite scopuri. De exemplu, la programare, atentia este marita asupra acelui Omega, a multimii de rezultate distincte posibile.)

Intrebari?!


---
df (gauss)
[1]


Legendă:  Access general  Conţine mesaje necitite  47558 membri, 58582 mesaje.
© 2007, 2008, 2009, 2010 Pro-Didactica.ρ