Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

Forum » Cereri de rezolvări de probleme » dim V1 intersectat cu V2
[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
Catalina21
Grup: membru
Mesaje: 62
07 Feb 2010, 22:31

[Trimite mesaj privat]

dim V1 intersectat cu V2    [Editează]  [Citează] 

dc V1, V2 subgr in R la a 8-a, dim V1=dim V2=7 si V1 diferit de V2, cat este dim V1 intersectat cu cu V2?eu m-am gandit ca o baza ar fi (0,0,0,0)...iar dc dim sunt egale, ar tb sa fie si V1=V2....nu stiu exact cum se face...

Multumesc!

gauss
Grup: Administrator
Mesaje: 6933
07 Feb 2010, 22:31

[Trimite mesaj privat]


  • Vectorul zero n-are ce sa caute in vreo baza. Pe propozitia asta se pica in Heidelberg la examenul oral de algebra liniara imediat. (Exceptand multele cazuri de ochi albastri.)
  • Daca doua spatii vectoriale au aceeasi dimensiune, pai e o droaie de loc de parcare pentru ele (daca nu au dimensunea maxima sau minima). Este o mare greseala de a afirma ca spatiile trebuie sa fie egale. (Exceptand cazurile numeroase, in care stim ca unul din spatii este in celalalt.)
  • Pentru cei ce nu au vazut inca dimensiunea a 8-a, si pentru a face problema mai accesibila si pentru cei din ciclul gimnazial, sa vedem cum stau lucrurie in dimensiunea 3: Se dau tot doua spatii diferite de codimensiune unu in spatiu. Cer scuze pentru emfaza, se dau doua plane in spatiu care trec printr-un punct dat O. (Sunt ele egale neaparat? Nu neaparat, e destul loc de intors in spatiul asta. In plus am spus ca nu sunt egale.) Ce este intersectia? Ce dimensiune are intersectia? Dupa ce clarificam aceste probleme, mai putem vorbi despre formula care leaga dimensiunile:

    (Formula in sine nu ajuta prea mult fara intuitie.) Desigur, spatiul V1+V2, este spatiul intreg, deoarece este strict mai mare decat V1, deci are dimensiune cel putin 8, dar nu incape loc mai mult...

    Propozitia se demonstreaza plecand de la o baza a intersectiei, extinzand-o la una pentru V1 si respectiv V2, si observand ca vectorii cu care s-a facut extinderea pusi la un loc cu cei din baza intersectiei formeaza o baza pentru spaziul V1+V2 generat de V1 si V2...

    Bafta!


  • ---
    df (gauss)
    [1]


    Legendă:  Access general  Conţine mesaje necitite  47558 membri, 58582 mesaje.
    © 2007, 2008, 2009, 2010 Pro-Didactica.ρ