Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

[Subiect nou]   [Răspunde]
[1]
Autor Mesaj
andreeamaria000
Grup: membru
Mesaje: 76
25 Nov 2009, 23:05

[Trimite mesaj privat]

logaritmi    [Editează]  [Citează] 

cum rezolvam o ecuatie de gen: log in baza 4*log in baza2*log in baza3 din(2x-1)=1/2


---
andreeamaria
bebein
Grup: membru
Mesaje: 386
25 Nov 2009, 19:31

[Trimite mesaj privat]


[Citat]
cum rezolvam o ecuatie de gen: log in baza 4*log in baza2*log in baza3 din(2x-1)=1/2



---
2 lucruri sunt infinite: universul si prostia omului...dar despre univers nu sunt inca sigur-Einstein )
gauss
Grup: Administrator
Mesaje: 6933
25 Nov 2009, 23:05

[Trimite mesaj privat]


Cand avem de rezolvat ecuatii (algebrice sau transcendente) este bine sa lucram daca se poate cat de mult cu *echivalentze*. Daca la un punct nu se poate scrie decat o implicatie trebuie avuta atentie la redactare... Eu stiu ca oamenii stiu de lucrul acesta, dar de exemplu la olimpiade, unde cam fiecare farama de punct conteaza, sau pur si simplu la scoala si facultate daca nu avem un nas de conformatia celor ce cer un [Acum il las in pace, viatza e prea scurta...] se insista pe legaturile logice din redactarea lucrarii.

Problema este daca nu ma insel:

Sa se gaseasca toate numerele reale x, pentru care expresia din membrul stang al ecuatiei de mai jos are sens si ecuatia este satisfacuta:

Atunci:

In solutia de mai sus trebuie mers fie peste tot cu echivalentza (
) in loc de un fel de "implica"
(
, scris
) fie trebuie verificat ca numarul obtinut chiar este solutie, astfel umpland cu un calcul simplu implicatia inversa si gaura logica. Acesta este motivul pentru care multi profesori recomanda in concursuri si bacuri verificarea scrisa pe hartia predata a solutiilor, (nu mumai pe ciorna,) precum si pentru motivul psihologic de a aduce calmul necesar in conditii de examen...

Eu nu sunt aici carcotas, vreau ca cei ce dau pe acest sait sa adune toate punctele pe unde trec! Multumesc pentru redactarea de mai sus, fiecare contributie ne face sa vedem din mai multe unghiuri acelasi lucru, si pe mine si pe cei ce mai trag un clicuit aleator, comunicand scapam de greseli!


---
df (gauss)
[1]


Legendă:  Access general  Conţine mesaje necitite  47558 membri, 58582 mesaje.
© 2007, 2008, 2009, 2010 Pro-Didactica.ρ