| Autor | Mesaj | 
            
					  
					  |  | 
 determinati solutiile ecuatiei sinx+sin2x+sin3x=1+cosx+cos2x, care apartine intervalului (pi/2;5pi/6) 
 | 
					  
					  |  | 
 sin3x+sinx+sin2x=1+cos2x+cosx2sin2x*cosx+sin2x=2(cosx)^2+cosx
 sin2x*(2cosx+1)-cosx(2cosx+1)=0
 2sinxcosx(2cosx+1)-cosx(2cosx+1)=0
 cosx(2cosx+1)(2sinx-1)=0
 cox=0=>x=pi/2 +k*pi , k apartine Z =>x=pi/2
 2cosx+1=0 =>cox=-1/2 => x apartine {2pi/3 +2k*pi|k intreg}U{4pi/3 +2k*pi|k intreg} =>x=2pi/3
 2sinx-1=0 => x apartine {pi/6 +2k*pi|k intreg}U{5pi/6+2k*pi|k intreg} => x=5pi/6
 
 daca e interval deschis x=2pi/3
 
 | 
					  
					  |  | 
 | [Citat] determinati solutiile ecuatiei sinx+sin2x+sin3x=1+cosx+cos2x, care apartine intervalului (pi/2;5pi/6)
 | 
 
va multumesc
 | 
					  
					  |  | 
 | [Citat] sin3x+sinx+sin2x=1+cos2x+cosx
 2sin2x*cosx+sin2x=2(cosx)^2+cosx
 sin2x*(2cosx+1)-cosx(2cosx+1)=0
 2sinxcosx(2cosx+1)-cosx(2cosx+1)=0
 cosx(2cosx+1)(2sinx-1)=0
 cox=0=>x=pi/2 +k*pi , k apartine Z =>x=pi/2
 2cosx+1=0 =>cox=-1/2 => x apartine {2pi/3 +2k*pi|k intreg}U{4pi/3 +2k*pi|k intreg} =>x=2pi/3
 2sinx-1=0 => x apartine {pi/6 +2k*pi|k intreg}U{5pi/6+2k*pi|k intreg} => x=5pi/6
 
 daca e interval deschis x=2pi/3
 | 
 
sin3x+sinx este egal cu :2sin2x*cosx?
 |