Bine ai venit guest
 
User:
Pass:

[Creare cont]
[Am uitat parola]
iBac = materialul ULTRACOMPLET de pregătire pentru bac la mate. Dacă vrei poţi.
Forum pro-didactica.ro  [Căutare în forum]

[Subiect nou]   [Răspunde]
[1] [2]  »   [Ultima pagină]
Autor Mesaj
daviodan
Grup: membru
Mesaje: 303
19 Jan 2007, 00:24

[Trimite mesaj privat]

Problema    [Editează]  [Citează] 

Se da un patrulater inscriptibil ABCD. Patrulaterul nu este ortodiagonal, adica nu are diagonalele perpendiculare.
Din punctul de intersectie al diagonalelor de duc perpendiculare pe doua laturi opuse ale patrulaterului care se vor nota cu Q si N; Q pe latura AB si N pe latura CD. Se noteaza cu P mijlocul laturii AD si M mijlocul laturii BC. Se uneste punctul de intersectie al diagonalelor cu punctele P si M.
Sa se arate ca triunghiul PQM este congruent cu triunghiul PNM.

Va rog sa ma ajutati in rezolvarea acestei probleme.

Euclid
Grup: Administrator
Mesaje: 2659
22 Oct 2006, 11:13

[Trimite mesaj privat]


Am adaugat problema in baza de date. URL-ul direct este

http://www.pro-didactica.ro/probleme/rez.php?rezolvareprobl=4484 (include si o figura interactiva)

De data aceasta, includem solutia noastra si in forum:



Figura:



---
Euclid
daviodan
Grup: membru
Mesaje: 303
23 Oct 2006, 09:33

[Trimite mesaj privat]


Va multumesc foarte mult.

andreea savu
Grup: membru
Mesaje: 5
07 Dec 2006, 14:10

[Trimite mesaj privat]


nu reusesc sa rezolv urmatoarea problema :

Suma a trei numere in progresie aritmetica este egala cu 21. Daca 2,3 si 9 se aduna acestor numere,atunci se obtin alte trei numere in progresie geometrica.Determinati cele trei numere.

va multumesc

Pitagora
Grup: Administrator
Mesaje: 4750
07 Dec 2006, 14:54

[Trimite mesaj privat]





---
Pitagora,
Pro-Didactician
andreea savu
Grup: membru
Mesaje: 5
07 Dec 2006, 23:37

[Trimite mesaj privat]


multumesc frumos,nici nu va puteti imagina cat de mult m-ati ajutat

andreea savu
Grup: membru
Mesaje: 5
18 Jan 2007, 23:02

[Trimite mesaj privat]


Va rog frumos sa ma ajutati si pe mine la aceasta problema....dar am o rugaminte mare de tot....sa fie cat mai explicit adica..."cu lux de amanunte"! Va multumesc enorm!


Intr-o clasa cu 36 de elevi,18 elevi picteaza,20 de elevi scriu poezii,25 de elevi canta,9 elevi picteaza si scriu poezii,11 elevi scriu poezii si canta,12 elevi picteaza si canta. Cati elevi picteaza si scriu poezii si canta?

Pitagora
Grup: Administrator
Mesaje: 4750
18 Jan 2007, 23:35

[Trimite mesaj privat]


[Citat]
Va rog frumos sa ma ajutati si pe mine la aceasta problema....dar am o rugaminte mare de tot....sa fie cat mai explicit adica..."cu lux de amanunte"! Va multumesc enorm!


Intr-o clasa cu 36 de elevi,18 elevi picteaza,20 de elevi scriu poezii,25 de elevi canta,9 elevi picteaza si scriu poezii,11 elevi scriu poezii si canta,12 elevi picteaza si canta. Cati elevi picteaza si scriu poezii si canta?


Cea mai simpla solutie este bazata pe "Principiul includerii si excluderii", pe care-l explic mai intai. Pentru orice multime A notam cu n(A) numarul de elemente din A. Fie A, B, C trei multimi. Principiul includerii si excluderii afirma ca



In cazul problemei de fata:

- notam A multimea elevilor ce picteaza, n(A)=18
- notam B multimea elevilor ce scriu poezii, n(B)=20
- notam C multimea elevilor ce canta, n(C)=25

Atuunci :

- multimea tuturor elevilor este
si


- multimea elevilor ca picteaza si scriu poezii este
, iar


- multimea elevilor ce picteaza si canta este
si


- multimea elevilor ce scriu poezii si canta este
si


-multimea elevilor ce picteaza, canta si scriu poezii este
si vrem sa aflam


Conform formulei de mai sus avem
, de unde

.


---
Pitagora,
Pro-Didactician
gauss
Grup: Administrator
Mesaje: 6933
18 Jan 2007, 23:37

[Trimite mesaj privat]


Fie
multimea zmangalitorilor.
Fie
multimea pe-rimatilor.
Fie
multimea repparilor.

Stim:

Se stie urmatorul rezultat,
principiul includerii si al excluderii,
care se ``demonstreaza'' facand diagrame Venn-Euler,
trei baloane care se intelnesc fiecare cu fiecare,
se pun litere pe cele 7 regiuni disjuncte delimitate in plan
si se verifica... Deci principiul ala:

Cu ce ni s-a dat avem:

Problema se rezolva acum cel mai usor, uitandu-ne mai atent la enunt,
unde poate ca scrie ca fiecare elev face si el ceva acolo.
(Altfel mai e ceva libertate de miscare...)
Daca pretinde ca e unul care nu face nimic, il trec eu la puieti,
folosind lema urmatoare:

Romanu' e nascut poet, munca il trimite la pictura, de care fuge devenind cantaret.

Bafta, dan!


---
df (gauss)
gauss
Grup: Administrator
Mesaje: 6933
18 Jan 2007, 23:40

[Trimite mesaj privat]


Hmm... ne-a rugat prea frumos...


---
df (gauss)
andreea savu
Grup: membru
Mesaje: 5
19 Jan 2007, 00:02

[Trimite mesaj privat]


clar...:| merci oricum

[1] [2]  »   [Ultima pagină]


Legendă:  Access general  Conţine mesaje necitite  47557 membri, 58580 mesaje.
© 2007, 2008, 2009, 2010 Pro-Didactica.ρ