Autor |
Mesaj |
|
f:\mathbb{N}\to\mathbb{Z}
|
|
$\mathbb{Q} \mathbb{Q}_+ $
$\R \R_-^* $
|
|
$\underbrace{1+2+...+n}_{\mbox{n termeni}}=\frac{n(n+1)}{2}$
$$\underbrace{1^2+2^2+...+n^2}_{n\text{ termeni}}=\dfrac{n(n+1)(2n+1)}{6}$$
|
|
$ A \in \mathcal{M}_3(\C)$
Fie
|
|
$ A =\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{pmatrix}$
$ detA =\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{vmatrix}$
|
|
Sume
1+2+\dots+n=\displaystyle\sum_{k=1}^{n}k
Produse
1\cdot 2\cdot...\cdot n=n!=\displaystyle\prod_{k=1}^{n}k
Integrale
$\displaystyle\int\sqrt{\ln^2{(\sin{x})}}dx$
$\displaystyle\int_{\frac{\pi}{2}}^{\pi}\arctg{x}dx$
Limite
$\displaystyle\lim_{ \alpha \to\infty}\frac{\alpha^2+1}{ \alpha^2-1 }=1$
|
|
$\sqrt[3]{x}=x^\frac{1}{3}$
$\sqrt[3]{\sqrt[5]{\sqrt[7]{...\sqrt[2k+1]{\psi}}}}$
$\displaystyle\sqrt[3]{\sqrt[5]{\sqrt[7]{...\sqrt[2k+1]{\psi}}}}$
|
|
Constanta lui Euler
$C=-\displaystyle\int_{0}^{\infty}e^{-t}\lntdt$
|
|
$C\approx 0,577 \simeq 0,577215664$
$C=\displaystyle\lim_{n\to\infty}\displaystyle\left(\sum_{k=1}^{n-1}\frac{1}{k}-\lnn\right)$
|
|
Teorema ( Inegalitatea lui Jensen)
Daca
este convexa si
cu
,atunci:
|
|
Inegalitatea lui Cauchy-Holder
$\displaystyle\sum_{i=1}^{n}a_ib_i\le\displaystyle\left(\sum_{i=1}^{n}b_i^\frac{k}{k-1}\right)^\frac{k-1}{k}\cdot\left(\sum_{i=1}^{n}a_i^k\right)^\frac{1}{k}$
|