| Autor | 
        Mesaj | 
    
            
					  
					  | 
					   | 
				   
				   
 1 a  
lim f(x) =lim [e^(-x)]/(1-x) = lim 1/([e^(-x)](1-x)) =0 daca x->+infinit 
=>y=0 asimtota orizontala spre +infinit  
  | 
					  
					  | 
					   | 
				   
				   
 ex 1b)va rog [color=blue][/color] 
  | 
					  
					  | 
					   | 
				   
				   
 1 b 
lim f(x) =lim [e^(-x)]/(x+1) = lim 1/([e^(-x)](x+1)) =0 daca x->-infinit 
=>y=0 asimtota orizontala spre -infinit 
  | 
					  
					  | 
					   | 
				   
				   
 ex 2 c..variantele noi? 
  | 
					  
					  | 
					   | 
				   
				   
 2c 
1<lnx<2 pentru orice x apartine [e,2^2] 
1<(lnx)^n<2^n se imparte relatia la x sensul nu se schimba 
1/x<[(lnx)^n]/<(2^n)/x integram de la e la e^2 
I0<In<(2^n)I0 
I0=1 de la punctul a 
1<In<2^n
  
In=int [(lnx)^n]/x dx de la e la e^2 
substitutie y=lnx =>dy=1/x dx 
daca x=e =>y=lne=1 
daca x=e^2 =>y=ln(e^2)=2 
In=int y^n de la 1..2 =[y^(n+1)]/(n+1) bara 1..2 =[2^(n+1) -1]/(n+1) 
=>1<[2^(n+1) -1]/(n+1)< 2^n pentru orice n natural
  
  |